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J. Phys. A: Math.  Gen .  22 (1989) 4729-4733. Printed in the U K  

COMMENT 

A note on a series of Bessel functions: asymptotic and 
convergence properties 

P Marksteiner, E Badralexe and  A J Freeman 
Department of Physics and  Astronomy, Northkestern LniLersitb, €\anston.  IL 60208-31 12, 
USA 

Receiked 17 January 1989, in final form 10 May 1989 

Abstract. A certain series of Bessel functions-recently discussed by Lee-is a n  asymptotic 
expansion of an  integral of a Bessel function. Here the asymptotic properties of the series 
are  investigated in more detail, a n d  i t  is shown that the series is not only asymptotic, but  
also convergent under  suitable restrictions. For large positive real arguments finite numbers 
of terms of the series give good approximations to the integral, but the infinite sum is 
different from the integral. 

1. Introduction 

In a recent paper [ l ] ,  Lee discusses some integrals of Bessel functions and gives, 
among others, the following expansion: 

J,( f ) d f = - ( v + 1 ) (  v + 3) . . . ( v + 2n - 1 ) z - " J , , + ~  + ( z )  + R 'L ( z ,  v )  
n = O  

( 1 )  

R, ( z ,  v )  = ( U +  1)( v + 3 )  . . . ( v + 2 N +  1 )  t- J , . + l v + i ( f )  d f  r 
where the path of integration is taken parallel to the positive real axis, and v and z 
are arbitrary complex numbers ( i f  Re v < -1 the integral is not defined for real z s 0). 
The coefficient of the series may also be written as 

which makes apparent the fact is that is equal to unity for n = 0. Similar integrals were 
already considered by Lommel[2] and by Watson [3]; some minor errors in the formula 
given by Watson were pointed out by Lee [ l ] .  

It is the purpose of the present comment to investigate further the asymptotic 
behaviour of (1) in the limit N + x ,  since: ( i )  the analysis given by Lee [ l ]  is very 
brief and some of his relations are not quite correct; and ( i i )  the series has the curious 
property that it can be interpreted in two different (and seemingly contradictory) ways, 
namely as an asymptotic series for large z, and as a convergent series for any z. 

2. Asymptotic properties 

The characteristic property of an  asymptotic series is to give an  approximation to a 
certain function when truncated after a finite number of terms; the quality of the 
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approximation depends on the argument and usually cannot be improved by adding 
more terms. This property is implicitly contained in the following formal definition 
of an asymptotic expansion [ 4 , 5 ] .  

Dejnition. A function f( z )  is said to admit an asymptotic expansion in an unbounded 
set S of the complex plane as z + m  

if the following two conditions hold: ( i )  the functions g , ( z )  form an asymptotic 
sequence, i.e. g n t l ( r ) / g n ( z ) + 0  as z + w ( z ~ S ) ,  and g , ( z ) f O  for all Z E S  with Iz/ 
sufficiently large; ( i i )  the partial sums F,,(z)  obey the condition 

f ( z )  - F, ( z )  = O(grl+,(z)) z+CO Z € S  (4) 
where F, ( z )  =x;=, akgk(z) .  The second property is equivalent to either of the fol- 
lowing: 

asz-,oC Z E S  

It is quite easy to verify that the series in question, equation ( l ) ,  satisfies both 
conditions (i) and (ii). The functions g , ( z )  = z-"J,+,+,(z) form an asymptotic sequence 
in any set Sa = { z j a  s larg zl s 7~ - a }  for arbitrary positive a < 77/2, since all the zeros 
of J y ( z )  are either real or lie in a bounded strip parallel to the real axis [3], and since 
the ratio J ,+ , ( z ) / J , ( z )  is bounded as z + w  ( Z E  &). Either of ( 4 ) ,  ( s a ) ,  ( 5 b )  may be 
verified by using the leading term of the asymptotic expansion of Bessel functions of 
large arguments 

J , ( z )  - ( 2 / 7 r ~ ) " ~  COS[Z - ( 7 ~ / 4 ) ( 2 ~ +  l ) ]  z + m  l a rgz /< .n  ( 6 )  

and by integration by parts. 
Although the asymptotic expansion of a function in a certain domain-if it exists-is 

unique, an asymptotic expansion does not uniquely define a function: there may be 
non-zero functions whose asymptotic expansion is identically zero, and two functions 
whose difference is such a function obviously have the same asymptotic expansion. 
In our particular case, the asymptotic expansion of any function p ( z )  having at most 
a pole at infinity (i.e. p ( z )  = O ( z k ) ,  z + CO, k E N )  vanishes identically. Therefore one 
may write 

X X 

- ( v  + 1)( v + 3) . . . ( v + 2n  - 1 )z-"J,+,+,( z )  - p (  z )  + J,( t )  dt. ( 7 )  

Since both the partial sums and the integral in ( 7 )  increase exponentially with increasing 
z off the real axis, the function p ( z )  becomes arbitrarily small compared with both of 
them for sufficiently large z. 

For positive real z, the series ( 7 )  is not an asymptotic expansion in the sense of 
the definition above. The functions g , ( z )  have zeros and therefore d o  not form an 
asymptotic sequence; ( 4 )  does not hold, and the limits in (5) do not exist. Nevertheless, 
the remainder R N ( z ,  Y )  does obey the condition 

n=O 2 

R ~ ( Z ,  v )  = 0 ( ~ - ~ - 3 ' 2 )  z + + m  (8) 
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which can be shown similarly by integration by parts. This condition is even stronger 
than the one required for asymptotic power series, and  for large real z the series 
truncated after a finite number of terms gives as good an  approximation to the integral 
as any asymptotic power series. We are therefore justified in calling this series 
‘asymptotic’ in a more general sense than the definition above, and  to denote it by a 
suitable symbol, say -L, which we define as follows 

s 
f ( z ) -  angn(z) as z + =  if f ( z )  - F,(z) = O(z-v-’) .  (9) 

If g n ( z )  = z - ~ ,  this definition is identical to the standard definition of an asymptotic 
expansion. 

n = O  

3. Convergence properties 

If the series expansion of a certain function 
X 

f ( z ) =  C angn(z) 
n = O  

converges in an  unbounded set S for sufficiently large z, then this series is automatically 
the asymptotic expansion of f ( z )  if the functions gn (z )  form an  asymptotic sequence. 
However, the generalised asymptotic property (9) does nor follow from (10). In the 
following we establish the conditions of convergence of the series in question, and we 
shall see that (9) and (10) hold for the same series but for different functions: the 
series is a (generalised) asymptotic expansion of one function, and the sum of the 
series is a different function. 

The asymptotic properties of Bessel functions of large order can be inferred from 
the first term of their power series expansions [3 ,6]  

(11) 

From ( l ) ,  (2) and  ( l l ) ,  one gets the following expression for the terms of the series 
in the limit n + oc: 

1 r [ n + ( v + l ) / 2 ]  z Y + l  

( v i  1)( v + 3 ) .  . . ( v + 2 n  - l)z-”J,+,+,(z) - . (12) T ( v + 1 ) / 2 ]  v + n + l  T ( n + v + l )  
It is a sufficient condition of convergence that the terms decrease faster than 1/ n. This 
is evidently fulfilled if Re [( v + 1)/2] < Re( v + l ) ,  i.e. for Re v > -1 the series actually 
converges?, and the limit R,(z, v )  for N + a exists and is finite. We now proceed to 
evaluate this limit. First we note that for Re v >  -1 

f - N - ‘ J y + N + , ( f )  dr - Iow f C N - ’  J v + ~ + i ( t )  d l  N + O .  (13) I?* 
This can be shown by taking = j:-ji. The first inegral is given by Watson [3] 

t More precisely, considered as a function of z, the series converges uniformly in any domain excluding 
the point at infinity (Weierstrass M-test for uniform convergence). I t  is also evident that the series diverges 
for Re U <  - 1  (unless Y i s  an odd integer). We can say nothing about the convergence for Re v =  -1, except 
the trivial case Y = -1, where all terms (but one) of the series vanish identically. 
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By inserting the asymptotic formula (1 1 ) into the integral from 0 to z one can show 
that for sufficiently large N and for Re U >  -1  this integral becomes arbitrarily small 
compared with the integral from 0 to cc. From ( l ) ,  ( 2 ) ,  ( 1 3 )  and (14) we get 

In the particular case v = 1 this result can also be obtained by computing the integral 
from z to CO analytically. In the limit N + 0;) the remainder is independent of v and 
z and equal to one. 

In  summary, we have obtained the following results: 
X 

- ( v +  1)( v + 3 ) .  . . ( v + 2 n  - ~ ) Z - ~ J ~ + ~ + ~ ( Z )  
n = O  

- ~ ( z ) + [ ~  J , ( t )  d t  z + c c  Z E  S ,  = { z la  s larg z /  s T - a }  

Table I .  Partial sums of the series ( I  for v = 1 (denoted by F ,  ( 2 ) )  for karious values of 
z and  N compared to JI,i 2 ) .  

J J z )  N F,(Z) J , , (  z 1 - F ,  ( z ) 

5 -0.177 596 771 

0.938 469 807 1 -0.040 858 943 0.979 328 751 
2 -0.046 002 5 11 0.984 472 3 18 

100 -0.060 9 17 634 0.999 387 441 
1000 -0.061 467 819 0.999 937 627 

I O  000 -0.061 523 944 0.999 993 75 1 

1 -0.192 497 609 0.014 900 837 
2 -0.317 691 964 0.140095 193 

I O  -0.765 I30 716 0.587 533 945 
100 -1.118 144625 0.940 547 854 

1000 -1.171 378640 0.993 78 1 869 
I O  000 - I  .I76 972 091 0.999 375 320 

100 000 -1.177 534275 0.999 937 503 

24 -0.056 230 274 5 -0.056214713 --0.000 015 562 
I O  -0.056 224 723 --0.000 005 55 1 
15  -0.056 21 1 453 --0.000 018 821 
20 -0.056 481 704 0.000 251 430 

100 -0.297 553 146 0.241 322 872 
1000 -0.922 358 017 0.866 127 743 

I O  000 - 1.041 936 286 0.985 706 012 
100 000 -1.054791 339 0.998 561 065 

0.5 

0.019 985 850 10 0.019 985 850 0.000 000 000 
100 0.019 985 850 0.000 000 000 
250 0.019 945 828 0.000 040 022 

1000 -0.062 253 322 0.082 239 173 
I O  000 -0.758 851 434 0.778 837 284 

100 000 -0.955 324 546 0.975 310 397 
1000 000 -0.977 517 277 0.997 503 127 

100 
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X 

A J J , ( r ) d t  z + + m  Z € R  V € C  

Z E C  R e v > - l .  

Note that (166) and (16c) do not contradict each other! (Equation (16c) does contradict 
Lee’s (13), which is incorrect.) For any positive real z, up to a certain number of terms 
(as long as JU+,,+,(z) is an oscillating function of n )  the partial sums approach the 
value of the integral (166) (and come very close to it for large z ) ;  when more terms 
are added the Bessel function becomes a monotonic function of n, and the series 
eventually converges very slowly towards a different value, namely the integral minus 
one. For v = 1 (where the integral is equal to Jo( z ) )  this curious behaviour is illustrated 
by some numerical examples in table 1. 
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